Skip navigation

Best thing I’ve seen in ages for motorsport….

For anyone who didn’t see the Spanish MotoGP today at Jerez, you missed a quite a race on the track in the wet weather as the commentators said: the only thing that was predictable was the fact that it was unpredictable. We watched Rossi show the world why he’s considered the greatest rider, moving from 12th to 3rd in matter of a few laps, though losing control of the Ducati and wiping out…

Spanish MotoGP Stoner Rossi Crash

Read more at Bikearama Motorcycle Blog


Oh yes, that really is meant to be an exhaust! Check out more info on this motorcycle fail on a 2005 Kawasaki zx10r. It is a real person and you should be very afraid!

Shakeable Dynamo Part 1: Why bother?

Firstly, there is no such thing as ‘free energy‘ you have to always put something in to get something out. I call this free energy because it comes from your own movements rather than having to pay cash for a battery or the juice to charge it, I guess it’s better to call it ‘financially free energy’. Also when you look at this, some of you may point out that this isn’t a dynamo because it generates AC current, but I call it a dynamo because of the bridge rectifier built in to that converts this to DC.

Basically like all alternators and dynamos it works on the principle of converting mechanical energy into electrical energy by inducing current in a conducting medium, such as copper wire, using a magnetic field. Typically this is done by rotating a magnet inside coils of wire.

How to build a simple dynamo

Shakeable Dynamo Part 1: Why bother?
Shakeable Dynamo Part 2: Building the initial dynamo

Right, so we’ve built the initial alternator/ dynamo and it works, not amazingly, but it works and we need to make this is a little bit more robust and protect all those lovely windings as well, at the same time we also need to convert our alternating current (AC) and convert that to direct current (DC), so that we can use this to power a small circuit/ LED without it turning on and off all the time. First I should probably explain how this all works… (feel free to correct me if I am wrong in my assumptions)

How do magnets work?

Atoms of a magnetEvery magnet creates a magnetic field due to the arrangement of the atoms in the material, in very simple terms, the atoms are spun so that most of the electrons are on one side of the atom, creating a negative charge on one side, while the lack of electrons on the other side of the atom exposes the positive charge of the…

More on how electromagnetic induction works

Shakeable Dynamo Part 1: Why bother?
Shakeable Dynamo Part 2: Building the initial dynamo
Shakeable Dynamo Part 3: How electromagnetic induction works

Lets start off by securing our coils on our alternator by removing the cardboard guides and then getting some clingfilm and wrapping a piece around your coils and then wrap a bit of tape around it to secure it all. Now we know it works, we don’t want to risk our coils moving or our connections breaking.

What’s a rectifier?


So what is a rectifier? A rectifier converts AC current to DC current, so we convert the current that changes direction to flowing in one direction. That means we’ll then get the full benefit of the electricity we’re creating rather than only half of it. Rectifiers use a series of diodes to achieve this. A diode (pictured left) is essentially a valve, it lets the flow of electricity through only one way, shown by the green arrow in my diagram, the silver band indicates the cathode  (-). By arranging a few of these together we can then convert our current by forcing current to flow one way.

How to build a bridge rectifier

First of all I have to start by condemning Brother Industries for what ultimately motivated me to build this basic prototype, allow me to explain and I apologise for the rant, the good stuff follows…

I read an article on the BBC news website (Vibration packs aim to replace batteries for gadgets) about a new type of battery developed by Brother that would require no external power source to charge it, just vibration from shaking it a few times. The aim being to replace batteries in low power applications such as TV remotes etc… thus removing alot of these batteries from the environment and ultimately saving energy.

Shakeable Dynamo Part 1: Why bother?

I have constructed a basic Arduino robot arm using 3 servos that cost me £15 in total plus a couple of hours in time to build and it’s very simple that I think anyone can replicate and build this. I already had the Arduino Duemilanove ATMEGA328, some foamboard, tools and glue. The robot arm has 3 joints and moves in the X and Y dimensions – not the Z (although I will build this in subsequent versions). I’ve included some very basic Arduino robot arm code along with robot arm design / blueprints and measurements for you to download and build (on any material).Full information here

Well, looks like my sonar sensor (SRF-05) is a just a tad inaccurate for precise measurement as I found from my radar screen I made (here).

So I’ve got hold of a Sharp GP2Y0A02 series infrared distance sensor. It’ll detect and measure anything within a 20-150cm range and it does this by triangulation from where it emits a beam of IR and from when it receives it – this isn’t too important to understand.

A collection of useful links/ index for primarily Arduino projects both my own and of other peoples.

We use them every day, but has no one got bored of pressing buttons on a stick, it’s far too much effort pressing buttons! Surely there are better ways to control a device? After doing some work with my Nikon camera using IR to control it, I wanted to do the same with other devices. Check out the video…


Get every new post delivered to your Inbox.